
Introduction

Atherosclerosis is a disease characterized by a chronic
vascular inflammation and fibrotic degeneration that affects
primarily the intima of large and medium-sized arteries[1,2].
It is believed that the vascular inflammation is activated in
response to an injury to the vascular wall and that the major
risk factors for development of cardiovascular disease, such
as hypercholesterolaemia, hypertension, diabetes and
smoking, are the main causes of this injury[3].

During the earliest stages of atherosclerosis, monocytes
and T cells infiltrate the arterial intima[4]. Their main
function is probably to remove aggregated and oxidized
lipoproteins that have become trapped in the extracellular
matrix of the arterial wall[5]. Should this defence
mechanism become challenged over a period of many years
and the removal of toxic oxidized lipoproteins fail, then the
vessel wall will become subject to chronic inflammation.
Because inflammation is the major signal for repair, this
situation leads to activation of vascular repair responses.
Evidence from several models of vascular injury suggests
that the process of vascular repair is very stereotypical[6].
Irrespective of whether the artery is injured from the outside
or the inside, the repair response is mediated by medial
smooth muscle cells that are modulated into a fibroblast-
like phenotype and migrate into the intima, where they
proliferate and produce extracellular matrix. This also
occurs in atherosclerosis when fatty streaks transform into

raised fibromuscular lesions. In many respects the fibro-
muscular atherosclerotic plaque resembles the hypertrophic
scar that develops when the healing of a skin wound is
disturbed by a chronic inflammatory process.

Inflammation also plays an important role in more
advanced stages of atherosclerosis. Atherosclerotic lesions
do not usually give rise to clinical symptoms until they
degenerate and rupture[7]. This process starts with
accumulation of extracellular lipids and an increased rate of
cell death in the core region of the plaque. Toxic oxysterols
and lipid peroxides that are present in the extracellular lipid
deposits are responsible for much of the cell death, but
insufficient oxygen supply and apoptosis induced by
inflammatory cytokines are also of importance. Disinte-
gration of dying cells in the core of the plaque results in
increased local inflammatory activity[8]. Microscopically,
these lesions are characterized by a cap of fibrous tissue,
containing smooth muscle cells, collagen and other
extracellular matrix components, that covers a core of
inflammatory cells; and accumulation of extracellular
lipids, necrotic cells and tissue debris. If the fibrous cap also
becomes affected by increased cell death and inflammation,
then the plaque may rupture.

Inflammatory markers and risk for
development of coronary heart disease

As discussed above, inflammation is a prominent aspect of
all stages of atherosclerosis. Because affected arteries
together represent a considerable amount of tissue,
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atherosclerosis would be likely to result in general signs of
increased inflammatory activity. Indeed, during the past few
years it has become clear that high levels of C-reactive
protein (CRP) and other markers of inflammatory activity
are associated with an increased risk for development of
coronary heart disease (CHD), as well as other
atherosclerosis-dependent vascular diseases[9,10]. It is likely
that this association reflects the inflammatory activity of the
atherosclerotic disease process and that the levels of
inflammatory markers in the circulation correlate with the
general severity of the disease[11]. To date 10 large
prospective studies, six conducted in the U.S.A. and four in
Europe, have consistently shown that CRP is a powerful
predictor of future first coronary event in apparently healthy
men and women (for review[12]). For example, an analysis
of data from the Physicians’ Health Study[13] showed that
those in the highest quartile of CRP had a twofold higher
risk for future stroke, a threefold higher risk for future
myocardial infarction and a fourfold higher risk for
peripheral vascular disease.

The increase in relative risk for development CHD caused
by CRP is independent of other risk factors, and stratified
analyses performed in the Women’s Health Study[14] have
shown that CRP is a strong predictor of future coronary
events, even among women with no history of hyper-
lipidaemia, hypertension, smoking, diabetes, or family
history of CHD. The observation that CRP is an
independent predictor of risk for development of CHD is
somewhat unexpected, assuming that the idea that
inflammation reflects vascular injury caused by traditional
risk factors is correct. This may not be entirely surprising,
however, bearing in mind the complexity of the
atherosclerotic process and possible individual differences
in the effectiveness of defence mechanisms, and that many
other factors may affect the levels of inflammatory markers.

Several studies have also suggested that individuals with
increased inflammatory activity, as assessed by
determination of CRP, are those who benefit most from
preventive treatment. In the Cholesterol and Recurrent
Events study[15], those with high CRP had a 54% reduction
in coronary events as compared with 25% in those with a
low CRP in response to treatment with pravastatin.
Treatment with pravastatin has also been shown to reduce
CRP levels, suggesting that this agent has anti-
inflammatory properties[16]. Moreover, in the Physicians’
Health Study[13] aspirin decreased the risk for future
myocardial infarction by 60% in apparently healthy men
with a high CRP (>2·1 mg . l – 1) but only by 14% in those
with a low CRP (<0·55 mg . l – 1).

Lipid-induced inflammation during
early lesion formation

What, then, are the causes of vascular inflammation in
atherogenesis? As discussed above, it is likely that chronic
injury inflicted by long-term exposure to the epidemiolo-
gically identified cardiovascular risk factors is of major
importance. Several lines of experimental evidence suggest

that the role of lipoprotein-derived lipids is of particular
importance in this process[17]. Induction of hyperchol-
esterolaemia in mice, rabbits, pigs and many other animals
(but not all) results in activation of vascular inflammation
within 6–8 weeks[18,19].

The first changes include accumulation of lipoproteins,
primarily low-density lipoprotein (LDL), in the extra-
cellular matrix of the vasculature. LDL particles tend to
attach to sulphate-containing proteoglycans, where they
aggregate and become oxidatively modified[20,21]. The
factors that are responsible for these modifications to LDL
remain to be fully elucidated, but appear to involve reactive
oxygen species as well as different membrane and extra-
cellular tissue-associated enzymes[2]. Recent gene knockout
studies in mice suggest that the enzyme lipoxygenase may
be of particular importance in this process[22]. Several
defence mechanisms, including antioxidant vitamins and
enzymes, exist to prevent oxidative damage of accumulated
lipoproteins, but in situations of a continuous lipid overload
these defence systems may eventually fail.

A second phase involves activation of an acute
inflammatory reaction in the arterial wall. A key element of
this reaction is expression and activation of adhesion
molecules, including intercellular adhesion molecule-1,
vascular cell adhesion molecule-1 and E-selectin, on the
endothelium[23]. The endothelial adhesion molecules serve
to attach circulating monocytes and T cells that infiltrate the
vascular wall. Animal experiments have also been used to
study the association between vascular LDL accumulations,
lipid oxidation and endothelial expression of adhesion
molecules. In rats injected with human LDL, LDL particles
can be observed accumulating in the aorta within 6 h,
expression of epitopes specific for oxidized LDL within
6–12 h, and endothelial expression of adhesion molecules
within 12–24 h[24]. Pre-incubation of LDL with antioxidants
inhibits some, but not all, of the activation of endothelial
adhesion molecule expression in this model, suggesting that
mechanisms other than lipid oxidation also are involved.
Among the other mechanisms that can explain the increased
expression of endothelial cell adhesion molecules and
leucocyte infiltration in atherosclerotic lesions are
decreased production of nitric oxide[25], native lipoproteins
(particularly triacylglycerol-rich lipoproteins)[26,27] and
altered levels of certain fatty acids[28].

Do lipoprotein-derived lipids affect
intracellular signal pathways in the

vascular wall?

Several types of lipid and phospholipid molecules have
important functions in intracellular signalling and
regulation of gene transcription. Diacylglycerol, platelet-
activating factor (PAF) and other PAF-like phospholipids,
lysophosphatidylcholine, ceramide and lipid-derived
radicals are some examples of lipid signal molecules that
mediate effects of membrane-bound receptors[29]. The
levels of these lipid signal substances are usually strictly
controlled in the cellular environment. In the atherosclerotic
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vascular wall, however, this balance may be disturbed by
lipids and phospholipids released from lipoproteins that are
being degraded and oxidized in extracellular matrix. Both
PAF-like phospholipids and lysophosphatidylcholine are
generated in significant amounts when lipoproteins are
oxidized. PAF-like phospholipids act on specific PAF
receptors on the cell surface, leading to activation of a
number of pro-inflammatory genes[30]. Lysophosphatidyl-
choline activates membrane-bound protein kinase C, which
is among the most important regulators of gene trans-
cription in cells[31].

Another molecule that is believed to play an important
role in lipid-induced inflammation in the vascular wall is the
transcription factor nuclear factor-κB (NF-κB)[32]. This
factor plays a central role in regulating inflammation and
immune responses. It activates a large number of genes,
including those that encode cytokines, adhesion molecules
and growth factors. It is present in atherosclerotic plaques,
but rarely in normal arterial tissue[32]. NF-κB is redox
sensitive and is activated by radicals. Oxidation of
lipoproteins is associated with generation of a large number
of different radicals, suggesting that lipid-induced
inflammation in the vascular wall may be mediated by
activation of the pro-inflammatory transcription factor
NF-κB by radicals released from oxidized lipids. Induction
of hypercholesterolaemia, as well as injection of a single
bolus of LDL, has been shown to activate arterial expression
of NF-κB[33]. Interestingly, cell culture experiments suggest
that triglyceride-rich lipoproteins, such as very-low-density
lipoprotein, are more potent inducers of NF-κB in vascular
cells than are LDL and oxidized LDL[28,34].

Immune responses against oxidized
LDL – a possible mechanism for

athero-protection

As discussed above, accumulation of modified lipoproteins
in the vascular extracellular matrix results in activation of
endothelial adhesion molecule expression and infiltration of
mononuclear leucocytes. In the intima, monocytes
differentiate into macrophages that express different forms
of scavenger receptors. These receptors will effectively
remove aggregated and oxidized LDL from the extracellular
space, thereby limiting injury to surrounding cells.
Macrophages that have taken up large amounts of lipids
through this mechanism develop a characteristic foam-cell
appearance. The inflammatory response to vascular lipid
accumulation will in this way act as a defence mechanism,
limiting further toxic effects of lipid oxidation. However,
this protective response is not without risks. If lipoproteins
continue to accumulate then the artery will enter a state of
chronic inflammation, leading to activation of a tissue repair
process and intimal fibrosis.

During recent years it has become clear that other athero-
protective mechanisms exist, which involve specific
immune responses against structures present in oxidized
lipoproteins. Oxidized LDL that has been taken up by
macrophages is processed and epitopes presented for T cells

by HLA-DR receptors[35]. This leads to activation of both
cell- and antibody-mediated immune responses. Up to 20%
of all T cells that are present in human atherosclerotic
plaques are specific for antigens present in oxidized
LDL[35]. Immune responses are activated against a large
number of different epitopes in oxidized LDL, including
oxidized phospholipids and aldehyde-containing peptide
sequences[36]. High levels of autoantibodies against
oxidized LDL have been reported in persons with increased
risk factors or clinically manifest atherosclerosis, including
those with CHD, acute myocardial infarction, peripheral
vascular disease, hypertension and pre-eclampsia[37–39].

One possible explanation for these associations could be
that immune responses against oxidized LDL are
atherogenic and that atherosclerosis is a lipoprotein
autoimmune disease. The fact that immune responses
against grafted organs are associated with development of
an aggressive atherosclerosis in the transplant suggests that
immune responses against vascular tissue are atherogenic. It
has transpired, however, that the full picture is more
complicated. The role of immune responses against
oxidized LDL in atherosclerosis has been studied in hyper-
cholesterolaemic mice and rabbits immunized with
homologous oxidized LDL[40–45]. The somewhat unex-
pected result of these studies was that immune responses
against oxidized LDL had a significant inhibitory effect on
the development of atherosclerosis. These findings suggest
the possibility of developing new approaches for prevention
and treatment of CHD based on the selective activation of
athero-protective immune responses (i.e. development of an
‘atherosclerosis vaccine’). In order to achieve this goal it
will be necessary to identify and characterize the exact
structure of the epitopes in oxidized LDL that induce
athero-protective immune responses. This work is in
progress and will hopefully result in development and initial
clinical studies of candidate vaccines within a few years.

The mechanism through which immune responses against
epitopes in oxidized LDL protects against development of
atherosclerosis is not fully understood. The recent
development of highly sensitive enzyme-linked immuno-
sorbent assays that can detect LDL with minimal oxidative
damage has made it possible to measure circulating
oxidized LDL and to demonstrate increased levels in CHD
patients[46]. One possibility is that antibodies against
oxidized LDL remove LDL particles with minimal
oxidative damage from the circulation before they
accumulate and injure vascular tissues.

Inflammation and intimal fibrosis

Proliferation of smooth muscle cells in intima is a key factor
in the development of raised fibromuscular atherosclerotic
plaques (Fig. 1). It was originally proposed that activation
of smooth muscle cell proliferation occurs in response to
platelet-derived growth factor released from aggregating
platelets in association with a denuding endothelial
injury[47]. However, it later became clear that most
fibromuscular lesions develop under an intact endothelium,
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and interest was instead focused on growth factors released
as a result of an inflammatory process[48]. Activated
macrophages release a number of potent growth factors for
smooth muscle cells, including platelet-derived growth
factor, heparin-binding epidermal growth factor, tumour
necrosis factor (TNF)-α and fibroblast growth factor[1].
Smooth muscle and endothelial cells can also produce most
of these growth factors in response to injury and
inflammation[3]. Activated macrophages also secrete
transforming growth factor-β, which inhibits smooth
muscle cell growth but is a potent enhancer of extracellular
matrix production in these cells. It has been difficult to

identify the individual role of each growth factor in the
development of fibromuscular lesions and it is likely that
they partake in a complex interplay. Studies using blocking
antibodies following balloon injury of rat arteries suggest
that fibroblast growth factor is involved in early activation
of cell proliferation[49] and that platelet-derived growth
factor is important for activation of smooth muscle cell
migration[50].

As discussed above, the most important role played by
lipoprotein lipids in this process is probably that they cause
injury and activate inflammation when they accumulate in
vascular tissues. However, lipids may also directly influence

Figure 1  (a) The early atherosclerotic lesion. Low-density lipoproteins (LDL) have accumulated in the extracellular
matrix of the arterial wall, where some particles become aggregated and oxidized (Ox). Monocytes and T cells
infiltrate the intima and OxLDL is taken up by macrophage scavenger receptors. Medial smooth muscle cells are
activated to modulate into synthetic, fibroblast-like repair cells that migrate through small openings in the internal
elastic membrane to enter the intima. (b) An early plaque from the aorta of a hypercholesterolaemic rabbit. (c) A
smooth muscle cell migrating through the internal elastic membrane. (d) A macrophage foam cell surrounded by
smooth muscle cells in an early lesion.

(a)

(b)

(c)

(d)
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the inflammatory activity. In lower concentrations many
molecules generated as a result of lipoprotein oxidation
stimulate macrophages and other inflammatory active cells
(such as the endothelium), whereas at higher concentrations
the toxic effects of these molecules becomes predominant.

TNF-αα is a possible link between
metabolic alterations and vascular

disease in diabetes

The cytokine TNF-α is an interesting example of the
complex interaction between lipoprotein lipids, inflam-
mation and atherosclerosis. It regulates the endothelial
expression of leucocyte adhesion molecules[51,52] as well as
endothelial procoagulant and fibrinolytic activity[53], it
activates the synthesis of growth factors and cytokines in
vascular cells, and it stimulates the growth of smooth
muscle cells[54]. The presence of TNF-α has been

demonstrated in human atherosclerotic plaques[55,56], in
proliferating smooth muscle cells in balloon-injured rabbit
aorta[57], in balloon-injured rat femoral arteries[58] and in the
media of coronary arteries during acute rejection of rabbit
cardiac allografts[59]. It is also expressed in rat arteries
within 6–12 h of a bolus injection of human LDL and in the
aorta of apolipoprotein-E-null mice before and during
development of atherosclerosis. Moreover, circulating TNF-
α levels are significantly increased in patients with
premature CHD as compared with age-matched healthy
control individuals[60].

TNF-α has also been implicated in the insulin-resistance
syndrome, a well characterized risk factor for CHD[61,62]. It
is expressed in adipose tissue and skeletal muscle, and is
believed to act locally by regulating the sensitivity of the
insulin receptor as well as the activity of lipoprotein
lipase[63,64]. In these tissues there is an association between
increased lipid accumulation and TNF-α expression[65,66].
By inhibiting uptake of fatty acids in adipose tissue by a
combined action on lipoprotein lipase and the insulin
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Figure 2 (a) The advanced atherosclerotic plaque. A
fibrous cap consisting of smooth muscle cells and
connective tissue covers a core of inflammatory cells,
extracellular lipid deposits and necrotic cells. (b) An
advanced plaque from the aorta of a hypercholesterol-
aemic rabbit. (c) A lipid-filled and severely injured
smooth muscle cell in the fibrous cap of an advanced
human carotid lesion.

(a) (c)

(b)
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receptor, TNF-α may induce hypertriglyceridaemia.
Interestingly, TNF-α was initially discovered as the factor
responsible for the hypertriglyceridaemia that may develop
during septicaemia.

Several other cytokines have similar effects on lipid and
glucose metabolism. The association between inflammatory
cytokines and regulation of the availability of energy
sources may be a way for the body to ensure sufficient
energy supplies in situations of great stress, such as tissue
injury or infection. It is likely that there is less need for such
defence mechanisms in many societies today, but instead
expression of cytokines in response to lipid overloading
may cause inflammatory reactions in other tissues, such as
the vasculature.

Inflammation and plaque rupture

The clinically most important role of inflammation in
atherosclerosis is probably during the end stages of the
disease. The development of an advanced atherosclerotic
plaque is characterized by increased accumulation of
extracellular lipids and cell death in the core region of the
plaque (Fig. 2)[3]. As a result the plaque is kept intact only
by a fibrous cap of smooth muscle cells and connective
tissue. Inflammation in the plaque is further enhanced by
the presence of damaged or dead cells. Many factors
contribute to the increased rate of cell death in the plaques.
Accumulation of toxic lipid substances is probably the most
important factor, but anoxia and infectious organisms may
also be involved. Finally, inflammation in itself may
contribute to cell death because smooth muscle cells
exposed to combinations of several cytokines may become
apoptotic[67].

The plaque enters a critical stage if the fibrous cap also
becomes affected by increased cell death and inflammation.
The factors that cause cell damage in the cap region are
probably the same as those that are responsible for necrosis
in the core of the plaque. However, in the fibrous cap this
process becomes more dangerous. If smooth muscle cells in
the fibrous cap die and disintegrate, then the tissue will
become a target for infiltrating macrophages that release
collagen-degrading matrix metalloproteinases. This is part
of a normal repair response after injury, and the macro-
phages will simultaneously release growth factors to
stimulate surrounding smooth muscle cells to proliferate
and produce new extracellular matrix to replace the old,
degraded one. If the surrounding smooth muscle cells are
themselves severely damaged or dead, however, then they
will be unable to fulfil this task, leaving the fibrous cap
weakened and the plaque susceptible to rupture by stress
forces of the blood flow[68].

Recent studies suggest that treatment with statins increase
plaque stability. Atherosclerotic plaques obtained from
patients treated with pravastatin for 3 months before carotid
endarterectomy contained less oxidized lipids and fewer
dead and inflammatory cells than did plaques from patients
given placebo[69]. Plaques from patients treated with
pravastatin also had more collagen and higher expression of

inhibitors of matrix-degrading enzymes. Similar studies
performed in experimental animals suggest that this effect is
independent of the effect of statins on the plasma LDL-
cholesterol level[70].

Conclusion

In summary, inflammation plays an important role
throughout the entire atherosclerotic disease process, and
vascular lipid accumulation is probably the major cause of
this inflammation. Treatment of traditional risk factors, and
in particular hypercholesterolaemia, contributes to limit
vascular injury and inflammation. In the future, new
treatments may become directed more specifically toward
the inflammatory process in atherosclerosis. However, it
should be kept in mind that this inflammation generally
occurs in response to vascular injury and aims to limit tissue
damage and induce repair. Another treatment approach that
may become reality in the future is the activation of athero-
protective immune responses by vaccines.
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